Part Number Hot Search : 
M13251GM GBU1002 2SK295 063XW10 R5110515 RF2054 LL414 MC10E116
Product Description
Full Text Search
 

To Download TSC102 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  march 2011 doc id 16754 rev 2 1/24 24 TSC102 high-side current sense amplifier pl us signal conditioning amplifier features independent supply and input common-mode voltages wide common-mode operating range: 2.8 to 30 v wide common-mode surviving range: -16 to 60 v (reversed battery and load-dump conditions) low current consumption: i cc max = 420 a output amplifier fo r tailor-made signal conditioning -40 to 125 c operating temperature range 4 kv esd protection applications battery chargers automotive current monitoring notebook computers dc motor control photovoltaic systems precision current sources uninterruptible power supplies high-end power supplies description the TSC102 measures a small differential voltage on a high-side shunt resistor and translates it into a ground-referenced output voltage. the device?s wide input common-mode voltage range, low quiescent current and tiny tssop8 packaging enable use in a wide variety of applications (also available in so-8 package). the input common-mode and power supply voltages are independent. the common-mode voltage can range from 2.8 to 30 v in operating conditions. the TSC102 is rugged against abnormal conditions on the input pins: vp and vm can withstand up to 60 v in case of voltage spikes, as little as -16 v in case of reversed battery, and up to 4 kv in case of electrostatic discharge. in addition to the current sensing amplifier, the TSC102 offers a fully accessible amplifier for output signal conditioning. the device?s overall current consumption is lower than 420 a. pin connections (top view) d so-8 (plastic package) p tssop8 (plastic package) 2 1 3 a1 vm gnd 6 8 vcc v p 4 a2 7 a3 5 out www.st.com
contents TSC102 2/24 doc id 16754 rev 2 contents 1 application schematic and pin d escription . . . . . . . . . . . . . . . . . . . . . . 3 2 absolute maximum ratings and operating conditions . . . . . . . . . . . . . 4 3 electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 4 electrical characteristi cs curves: current sense amplifie r . . . . . . . . . . 8 5 electrical characterist ics curves: signal conditioni ng amplifier . . . . 11 6 parameter definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 6.1 common-mode rejection ratio (cmr) . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 6.2 supply voltage rejection ratio (svr) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 6.3 gain (av) and input offset voltage (v os ) . . . . . . . . . . . . . . . . . . . . . . . . . . 12 6.4 output voltage drift versus temperature . . . . . . . . . . . . . . . . . . . . . . . . . . 13 6.5 output voltage accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 7 application information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 8 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 8.1 so-8 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 8.2 tssop-8 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 9 ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 10 revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
TSC102 application schematic and pin description doc id 16754 rev 2 3/24 1 application schematic and pin description the TSC102 high-side current sense amplifier features a 2.8 to 30 v input common-mode range that is independent of the supply voltage. the main advantage of this feature is that it allows high-side current sensing at voltages much greater than the supply voltage (v cc ). figure 1. application schematics ta bl e 1 describes the function of ea ch pin. their position is sh own in the illustration on the cover page and in figure 1 above. a1 table 1. pin description symbol type function out analog output out voltage is proportional to th e magnitude of the sense voltage v p -v m . gnd power supply ground line. v cc power supply positive power supply line. v p analog input connection for the external sense resistor. the measured current enters the shunt on the v p side. v m analog input connection for the external sense resistor. the measured current exits the shunt on the v m side. a1 analog input connection to current sensing amplifier output. a2 analog input connection to signal conditioning amplifier non-inverting input. a3 analog input connection to signal conditioning amplifier inverting input. 5 v v s en s e 1 8 5 vp vm vcc t s c102 2 o u t gnd 3 7 4 a1 a2 a 3 6 r s en s e ilo a d vo u t av=20 v/v c u rrent s en s e a mplifier s ign a l conditioning a mplifier am0450 8
absolute maximum ratings and operating conditions TSC102 4/24 doc id 16754 rev 2 2 absolute maximum ratings and operating conditions table 2. absolute maximum ratings symbol parameter value unit v id input pins differential voltage (v p -v m )20v v i current sensing input pin voltages (v p and v m ) (1) 1. these voltage values are measured with respect to the gnd pin. -16 to 60 v v 1 voltage for pins a1, a2, a3, out, vcc (1) -0.3 to 7 v t stg storage temperature -55 to 150 c t j maximum junction temperature 150 c r thja tssop8 thermal resistance junction to ambient 120 c/w so-8 thermal resistance junction to ambient 125 c/w esd hbm: human body model for v m and v p pins (2) 2. human body model for vm and vp: a 100 pf capacitor is charged to the specif ied voltage, then discharged through a 1.5 k resistor between the vp or vm pin and gnd while the other pins are floating. 4kv hbm: human body model (3) 3. human body model: a 100 pf capacit or is charged to the specified voltage, then discharged through a 1.5 k resistor between two pins of the device. this is done for all couples of connected pin combinations while the other pins are floating. 2.5 kv mm: machine model (4) 4. machine model: a 200 pf capacitor is charged to the specified voltage, then discharged directly between two pins of the device with no external series resistor (internal resistor < 5 ). this is done for all couples of connected pin combinations whil e the other pins are floating. 200 v cdm: charged device model (5) 5. charged device model: all pins plus package ar e charged together to the specified voltage and then discharged directly to ground. 1.5 kv table 3. operating conditions symbol parameter value unit v cc dc supply voltage from t min to t max 3.5 to 5.5 v t oper operational temperature range (t min to t max ) -40 to 125 c v icm common mode voltage range (v m pin voltage) 2.8 to 30 v
TSC102 electrical characteristics doc id 16754 rev 2 5/24 3 electrical characteristics unless otherwise specified, the electrical characteristics given in the following tables have been measured under the following test conditions. t amb =25c, v cc =5v, v sense =v p -v m =50mv, v m =12v. no load on out pin. signal conditioning amplifier used as a buffer (pin a3 connected to pin out and pin a1 connected to pin a2). table 4. supply symbol parameter test conditions min. typ. max. unit i cc total supply current v sense = 0 v, pin a1 open, pin a2 shorted to gnd t min < t amb < t max 240 420 a i cc1 total supply current v sense = 50 mv, pin a1 connected to pin a2 t min < t amb < t max 420 700 a table 5. current sensing amplifier input stage symbol parameter test conditions min. typ. max. unit dc cmr1 dc common mode rejection variation of v a1 versus v icm referred to input (1) 2.8 v < v m < 30 v -40 c < t amb < 150 c 90 100 db ac cmr1 ac common mode rejection variation of v a1 versus v icm referred to input (peak-to-peak voltage variation) 2.8 v< v m < 30 v 1khz sine wave 75 db 2.8 v < v m < 30 v 10 khz sine wave 60 db svr1 supply voltage rejection variation of v a1 versus v cc (2) 3.5 v< v cc < 5.5 v -40 c < t amb < 125 c 85 90 db v os input offset voltage (3) t amb =25 c -40 c < t amb < 125 c 1.5 2.3 mv dv os /dt input offset drift versus t -40 c < t amb < 125 c 3 8 v/c i lk input leakage current v cc =0v t min < t amb < t max 1a i ib input bias current v sense =0v t min < t amb < t max 57 a 1. see chapter 6: parameter definitions on page 12 for the definition of cmr. 2. see chapter 6 for the definition of svr. 3. see chapter 6 for the definition of v os .
electrical characteristics TSC102 6/24 doc id 16754 rev 2 table 6. current sensing amplifier output stage symbol parameter test conditions min. typ. max. unit av gain (variation of v a1 versus v sense ) 20 v/v v oh1 a1 node high-level saturation voltage v oh1 =v cc -v a1 v sense = 1 v i a1 =1ma -40 c< t amb < 125 c 85 185 mv v ol1 a1 node low-level saturation voltage v sense =-1 v i a1 =1ma -40 c< t amb < 125 c 75 165 mv i sc1 short-circuit current a1 connected to v cc or gnd 10 30 ma v a1 / t output voltage drift versus t (1) t min < t amb < t max 400 ppm/c v a1 / i a1 output stage load regulation -5 ma < i a1 < +5 ma i a1 sink or source current 0.4 2 mv/ma v a1 total output voltage accuracy (2) v sense = 50 mv t amb = 25 c t min < t amb < t max 2.5 4 % v a1 total output voltage accuracy (2) v sense = 100 mv t amb = 25 c t min < t amb < t max 2.5 4 % v a1 total output voltage accuracy (2) v sense = 20 mv t amb = 25 c t min < t amb < t max 8 10 % v a1 total output voltage accuracy (2) v sense = 10 mv t amb = 25 c t min < t amb < t max 13 16 % 1. see chapter 6: parameter definitions on page 12 for the definition of output vo ltage drift versus temperature. 2. output voltage accuracy is the difference with the expected theoretical output voltage v a1-th =av * v sense . see chapter 6 for a more detailed definition. table 7. current sensing amplifier frequency response symbol parameter test conditions min. typ. max. unit ts v a1 settling to 1% final value v sense =10mv to 100mv, c load =47pf 7s sr slew rate v sense =10mv to 100mv 0.2 0.4 v/s bw 3 db bandwidth c load = 47 pf 800 khz table 8. current sensing amplifier noise symbol parameter test conditions min. typ. max. unit e n equivalent input noise voltage f = 1 khz 50 nv/ hz
TSC102 electrical characteristics doc id 16754 rev 2 7/24 table 9. signal conditioning amplifier symbol parameter test conditions min. typ. max. unit v icm common mode voltage range t min < t amb < t max 0vcc v io input offset voltage v a2 =1v t amb =25 c -40 c < t amb < 150 c 3.5 4.5 mv v io input offset voltage drift t min < t amb < t max 5v/c iib input bias current v a2 =v a3 =v cc /2 10 pa v oh2 output high-level saturation voltage (v oh2 =v cc -v out ) v a2 =1v v a3 =0v i out =1ma -40 c< t amb < 125 c 85 185 mv v ol2 output low-level saturation voltage v a2 =0v v a3 =1v i out =1ma -40 c< t amb < 125 c 75 165 mv i sc2 short-circuit current out connected to v cc or gnd 12 30 ma v out / i out output stage load regulation -10 ma < i out < +10 ma v a2 =1v i out sink or source current 300 v/ma cmr2 dc common mode rejection variation of v io versus v icm t min < t amb < t max 0v electrical characteristics curves: current sense amplifier TSC102 8/24 doc id 16754 rev 2 4 electrical characteristics curves: current sense amplifier unless otherwise specified, the test conditions for the following curves are: t amb =25c, v cc =5v, v sense =v p -v m =50mv, v m =12v. no load on out pin. signal conditioning amplifier used as a buffer (pin a3 connected to pin out and pin a1 connected to pin a2). figure 2. output voltage vs. vsense figure 3. a1 pin voltage accuracy vs. vsense 0 1 2 3 4 5 6 -50 50 150 250 vout (v) vsense (mv) -20% -15% -10% -5% 0% 5% 10% 15% 20% 0 50 100 150 200 vsense (mv) guaranteed accuracy @25c guaranteed accuracy vs. t typical accuracy figure 4. supply current vs. supply voltage figure 5. supply current vs. vsense 0 50 100 150 200 250 300 350 400 450 500 0246 icc (a) vcc (v) t=125c t=25c t=-40c 0 100 200 300 400 500 600 700 -250 -150 -50 50 150 250 icc (a) vsense (mv) t=125c t=25c t=-40c
TSC102 electrical characteristics curves: current sense amplifier doc id 16754 rev 2 9/24 figure 6. vp pin input bias current vs. vsense figure 7. vm pin input bias current vs. vsense 0 10 20 30 40 50 60 70 80 -250 -150 -50 50 150 250 iib (a) vsense (mv) t=125c t=-40c t=25c 0 1 2 3 4 5 6 7 8 9 -250 -150 -50 50 150 250 iib (a) vsense (mv) t=125c t=-40c t=25c figure 8. output stage low-state saturation voltage versus output current (vsense = -1 v) figure 9. output stage high-state saturation voltage versus output current (vsense = +1 v) 0 200 400 600 800 1000 1200 0246810 vol1 (mv) ia1 (ma) t=125c t=-40c t=25c output stage sinking current 0 200 400 600 800 1000 1200 1400 -10-8-6-4-2 0 voh1 (mv) ia1 (ma) t=125c t=-40c t=25c output stage sourcing current figure 10. output stage load regulation figure 11. step response -2 -1 0 1 2 3 4 5 6 7 -10 -5 0 5 10 va1-va1@ia1=0 (mv) ia1(ma) output stage sourcing current output stage sinking current t=125c t=-40c t=25c
electrical characteristics curves: current sense amplifier TSC102 10/24 doc id 16754 rev 2 figure 12. bode diagram figure 13. power supply rejection ratio -30 -20 -10 0 10 20 30 10 hz 100 hz 1,000 hz 10,000 hz 100,000 hz 1,000,000 hz 10,000,000 hz gain (db) 0 10 20 30 40 50 60 70 80 90 100 10 hz 100 hz 1,000 hz 10,000 hz 100,000 hz psrr(db)
TSC102 electrical characteristics curves: signal conditioning amplifier doc id 16754 rev 2 11/24 5 electrical characteristics curves: signal conditioning amplifier unless otherwise specified, the test conditions for the following curves are: t amb =25c, v cc =5v no load on out. signal conditioning amplifier tested as standalone amplifier. figure 14. input offset voltage versus input common-mode voltage figure 15. input offset voltage versus supply voltage (vicm = vcc/2) figure 16. output current versus output voltage figure 17. bode diagram (vout = vcc/2, r l =10k , c load = 100 pf) -1.4 -1.2 -1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 vio (mv) vicm (v) t=125c t=-40c t=25c -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 3.50 3.70 3.90 4.10 4.30 4.50 4.70 4.90 5.10 5.30 5.50 vio (mv) vcc (v) t=125c t=-40c t=25c -50 -40 -30 -20 -10 0 10 20 30 40 50 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 output current (ma) vout (v) t = 125 c t=-40c t=25c sink source -30 0 30 60 90 120 150 180 210 -30 -20 -10 0 10 20 30 40 50 1 khz 10 khz 100 khz 1,000 khz 10,000 khz phase (deg) gain (db)
parameter definitions TSC102 12/24 doc id 16754 rev 2 6 parameter definitions 6.1 common-mode rejection ratio (cmr) the common-mode rejection ratio (cmr) meas ures the ability of the current sensing amplifier to reject any dc voltage applied on both inputs v p and v m . the cmr is referred back to the input so that its effect can be compared with the applied differential signal. the cmr is defined by the formula: 6.2 supply voltage rejection ratio (svr) the supply voltage rejection ra tio (svr) measures the ability of the current sensing amplifier to reject any variation of the supply voltage v cc . the svr is referred back to the input so that its effect can be compared with the applied differential signal. the svr is defined by the formula: 6.3 gain (av) and input offset voltage (v os ) the input offset voltage is defined as the intersection between the linear regression of the v a1 versus v sense curve with the x-axis (see figure 18 ). if v a11 is the output voltage with v sense =v sense1 = 50 mv and v a12 is the output voltage with v sense =v sense2 = 5 mv, then v os can be calculated with the formula: the amplification gain av is defined as the ratio between the output voltage and the input differential voltage. cmr 20 ? v a1 v icm av ? ------------------------------ log ? = svr 20 ? v a1 v cc av ? --------------------------- log ? = v os v sense1 v sense1 v sense2 ? v a11 v a12 ? ----------------------------------------------- - v out1 ? ?? ?? ? = av v out v sense ----------------- - =
TSC102 parameter definitions doc id 16754 rev 2 13/24 figure 18. v a1 versus v sense characteristics: detail for low v sense values 6.4 output voltage drift versus temperature the output voltage drift versus temperature is defined as the maximum variation of v a1 with respect to its value at 25 c, over the temperature range. it is calculated as follows: with t min < t amb < t max . figure 19 on page 14 provides a graphical definition of the output voltage drift versus temperature. on this chart v a1 is always within the area defined by the maximum and minimum variation of v a1 versus t, and t = 25 c is considered to be the reference. vo s v s en s e2 v s en s e v a 1 v s en s e1 v a 1_1 v a 1_2 am04509 v a1 t -------------- -max v a1 t amb () v a1 25 c () ? t amb 25 c ? --------------------------------------------------------------------- - =
parameter definitions TSC102 14/24 doc id 16754 rev 2 figure 19. output voltage drift versus temperature 6.5 output voltage accuracy the output voltage accuracy is the difference between the actual output voltage and the theoretical output voltage. ideally, the current sensing output voltage should be equal to the input differential voltage multiplied by the theoretical gain, as in the following formula. v a1-th =av. v sense the actual value is very slightly different, mainly due to the effects of the input offset voltage v os and the non-linearity. -50 -40 -30 -20 -10 0 10 20 30 40 50 -60 -40 -20 0 20 40 60 80 100 120 140 va1-va1@25c (mv) t (c)
TSC102 parameter definitions doc id 16754 rev 2 15/24 figure 20. v a1 vs. v sense theoretical and actual characteristics the output voltage accuracy, expressed as a percentage, can be calculated with the following formula: with av = 20 v/v. v s en s e 5 mv ide a l act ua l v a 1 v a 1 a cc u r a cy for v s en s e = 5 mv am04510 v s en s e 5 mv ide a l act ua l v a 1 v a 1 a cc u r a cy for v s en s e = 5 mv am04510 v a1 abs v a1 av v sense ? () ? () av v sense ? ------------------------------------------------------------------------ - =
application information TSC102 16/24 doc id 16754 rev 2 7 application information the TSC102 can be used to measure current and feed back the information to a microcontroller, as shown in figure 21 . figure 21. typical application schematic this fully-accessible output am plifier offers wide schematic po ssibilities, as shown in the following examples. figure 22. gain higher than 20 v reg microcontroller adc gnd v cc 5 v v s en s e 1 8 5 vp vm vcc t s c102 2 o u t gnd 3 7 4 a1 a2 a 3 6 r s en s e ilo a d vo u t lo a d am04511 5 v r1 r2 vo u t = av.(1+r1/r2).v s en s e v s en s e 1 8 5 vp vm vcc t s c102 2 o u t gnd 3 7 4 a1 a2 a 3 6 am04512
TSC102 application information doc id 16754 rev 2 17/24 figure 23. gain lower than 20 figure 24. overcurrent protection 5 v vo u t = av.r2.v s en s e/(r1+r2) r1 r2 1 8 5 vp vm vcc t s c102 2 o u t gnd 3 7 4 a1 a2 a 3 6 v s en s e am0451 3 r1 r2 r 3 r4 1 8 5 vp vm vcc t s c102 2 o u t gnd 3 7 4 a1 a2 a 3 6 5 v v s en s e am04514
application information TSC102 18/24 doc id 16754 rev 2 figure 25. first-order low-pass filter figure 26. second-order low-pass filter r1 c1 1 8 5 vp vm vcc t s c102 2 o u t gnd 3 7 4 a1 a2 a 3 6 5 v v s en s e am04515 r1 r2 c1 c2 r4 r 3 1 8 5 vp vm vcc t s c102 2 o u t gnd 3 7 4 a1 a2 a 3 6 5 v v s en s e am04516
TSC102 package information doc id 16754 rev 2 19/24 8 package information in order to meet environmental requirements, st offers these devices in different grades of ecopack ? packages, depending on their level of environmental compliance. ecopack ? specifications, grade definitions and product status are available at: www.st.com . ecopack ? is an st trademark.
package information TSC102 20/24 doc id 16754 rev 2 8.1 so-8 package information figure 27. so-8 package mechanical drawing table 10. so-8 package mechanical data ref. dimensions millimeters inches min. typ. max. min. typ. max. a1.750.069 a1 0.10 0.25 0.004 0.010 a2 1.25 0.049 b 0.28 0.48 0.011 0.019 c 0.17 0.23 0.007 0.010 d 4.80 4.90 5.00 0.189 0.193 0.197 e 5.80 6.00 6.20 0.228 0.236 0.244 e1 3.80 3.90 4.00 0.150 0.154 0.157 e 1.27 0.050 h 0.25 0.50 0.010 0.020 l 0.40 1.27 0.016 0.050 l1 1.04 0.040 k 0 8 1 8 ccc 0.10 0.004
TSC102 package information doc id 16754 rev 2 21/24 8.2 tssop-8 package information figure 28. tssop8 package mechanical drawing table 11. tssop8 package mechanical data ref. dimensions millimeters inches min. typ. max. min. typ. max. a1.200.047 a1 0.05 0.15 0.002 0.006 a2 0.80 1.00 1.05 0.031 0.039 0.041 b 0.19 0.30 0.007 0.012 c 0.09 0.20 0.004 0.008 d 2.90 3.00 3.10 0.114 0.118 0.122 e 6.20 6.40 6.60 0.244 0.252 0.260 e1 4.30 4.40 4.50 0.169 0.173 0.177 e 0.65 0.0256 k0 80 8 l 0.45 0.60 0.75 0.018 0.024 0.030 l1 1 0.039 aaa 0.10 0.004
ordering information TSC102 22/24 doc id 16754 rev 2 9 ordering information table 12. order codes part number temperature range package packing marking TSC102ipt -40 c, +125 c tssop8 tape & reel 102i TSC102idt so-8 tape & reel TSC102i TSC102iypt -40 c, +125 c automotive grade tssop8 (1) 1. qualification and characterizati on according to aec q100 and q003 or equivalent, advanced screening according to aec q001 & q 002 or equivalent are on-going. tape & reel 102y TSC102iydt so-8 (2) 2. qualification and characterizati on according to aec q100 and q003 or equivalent, advanced screening according to aec q001 & q 002 or equivalent. tape & reel TSC102iy
TSC102 revision history doc id 16754 rev 2 23/24 10 revision history table 13. document revision history date revision changes 09-nov-2009 1 initial release. 03-mar-2011 2 added automotive grade qualification for so-8 package (note 2. under ta b l e 1 2 ).
TSC102 24/24 doc id 16754 rev 2 please read carefully: information in this document is provided solely in connection with st products. stmicroelectronics nv and its subsidiaries (?st ?) reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described he rein at any time, without notice. all st products are sold pursuant to st?s terms and conditions of sale. purchasers are solely responsible for the choice, selection and use of the st products and services described herein, and st as sumes no liability whatsoever relating to the choice, selection or use of the st products and services described herein. no license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. i f any part of this document refers to any third party products or services it shall not be deemed a license grant by st for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoev er of such third party products or services or any intellectual property contained therein. unless otherwise set forth in st?s terms and conditions of sale st disclaims any express or implied warranty with respect to the use and/or sale of st products including without limitation implied warranties of merchantability, fitness for a parti cular purpose (and their equivalents under the laws of any jurisdiction), or infringement of any patent, copyright or other intellectual property right. unless expressly approved in writing by an authorized st representative, st products are not recommended, authorized or warranted for use in milita ry, air craft, space, life saving, or life sustaining applications, nor in products or systems where failure or malfunction may result in personal injury, death, or severe property or environmental damage. st products which are not specified as "automotive grade" may only be used in automotive applications at user?s own risk. resale of st products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by st for the st product or service described herein and shall not create or extend in any manner whatsoev er, any liability of st. st and the st logo are trademarks or registered trademarks of st in various countries. information in this document supersedes and replaces all information previously supplied. the st logo is a registered trademark of stmicroelectronics. all other names are the property of their respective owners. ? 2011 stmicroelectronics - all rights reserved stmicroelectronics group of companies australia - belgium - brazil - canada - china - czech republic - finland - france - germany - hong kong - india - israel - ital y - japan - malaysia - malta - morocco - philippines - singapore - spain - sweden - switzerland - united kingdom - united states of america www.st.com


▲Up To Search▲   

 
Price & Availability of TSC102

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X